1800 Indian Wood Circle, Maumee, Ohio 43537 Tel: 419.891.2222 Fax: 419.891.1595 www.MannikSmithGroup.com

TRAFFIC IMPACT ASSESSMENT

To:

From: Steve Diebol, PE, PTOE

CC:

Date: August 7, 2017

Project #: J1840001

Introduction and Background

The purpose of this memo was to assess localized traffic impacts from a mixed-use development on the southwest corner of the intersection of SR66 (Jefferson Avenue) and Palmer Drive. This analysis focuses on proposed traffic generation and future intersection configurations, both temporary and permanent, compared to the background conditions without the development. Previous studies have evaluated the existing and background conditions and recommended improvements, and it is not the intent of this document to repeat those analyses.

The proposed development is anticipated to consist of three restaurants; two fast-food style and one sitdown style. Access will be provided by a new southwest leg to the intersection of SR 66 (Jefferson Avenue) and Palmer Drive. The site plan is shown on the right of this page. The Opening Year of the development is expected to be 2018, and the intersection was also evaluated for the Design Year (2038). The proposed Defiance Combined Middle School/High School building is under construction on Palmer Drive just north of the intersection and is expected to open to students on January 2018. A previous traffic study was performed for the school site and this document was the source of the background conditions traffic counts. The 2017 and 2037 "build" conditions traffic volume scenarios from the previous study were assumed to be representative of the 2018 and 2038 background conditions analyzed here.

The SR 66 (Jefferson Avenue) & Palmer Drive intersection is currently a 3 leg, one-way stop controlled intersection (southwestbound Palmer Drive has a stop sign) with a single lane in each direction at each approach. The previous school traffic study recommended signalization and added left turn lanes on all approaches. The City of Defiance instead prefers a roundabout to be installed at the intersection based on the Feasibility Study conducted in 2016 for a grant application which unfortunately did not receive a funding award. The City of Defiance has indicated they are currently considering the pursuit of construction funds for the roundabout possibly through an Ohio Public Works Commission (OPWC) grant/loan combination package, and if successful the funding could be available in July 2018 for construction. This study will evaluate the background and build traffic volumes under the existing intersection configuration; temporary signal control intended to be maintained until the roundabout can be installed; and the ultimate future roundabout configuration, and to recommend any changes to lane configurations or traffic control in order to adequately serve traffic.

THE MANNIK & SMITH GROUP, INC. J1840001.RPT.SAD.TrafficImpactStatement.docx

Site Trips

Peak hour site trips were estimated using the 9th Edition of the Institute of Transportation Engineer's (ITE) Trip Generation Manual. Pass-by reductions were also applied for the proposed land uses following the Trip Generation Handbook guidance. The directional distribution used to assign site trips to the adjacent roads were based on the volumes approaching and departing the three other legs of the intersection. The Trip Generation and Trip Distribution summaries are shown in Tables 1.1 and 1.2, respectively. Calculations are provided in the attachments to this memo.

Table 1.1 Trip Generation Summary										
REPORT OF THE PROPERTY OF THE		AM Peak Hou	r -		PM Peak Hou	ır				
Location / Trip Type	IN	OUT	TOTAL	IN	OUT	TOTAL				
Fast-Food Restaurant (1,500 sf)	42	39	81	37	34	71				
Fast-Food Restaurant (2,500 sf)	69	66	135	62	57	119				
Sit-Down Restaurant (6,000 sf)	43	37	80	60	51	111				
Subtotal Future Driveway Trips	154	142	296	159	142	301				
Less Pass-By Trips	(37)	(35)	(72)	(76)	(68)	(144)				
Total Future New Trips	117	107	224	83	74	157				

AM Peak Hour	
	PM Peak Hour
Direction Location Entering From Exiting To	Entering From Exiting To
% Veh % Ve	eh % Veh % Ve
South SR 66 33 12 33 1	2 37 28 37 2
North SR 66 39 15 39 1	4 41 31 41 2
East Palmer Dr. 27 10 27 9	9 22 17 22 1

As shown in the table above, the development is expected to generate 224 new AM peak hour trips (117 inbound, 107 outbound) and 157 new PM peak hour trips (83 inbound, 74 outbound). The projected traffic volumes for this analysis are presented in Figure 1 located in the attachments.

Capacity Analysis

The capacity SR 66 (Jefferson Avenue) and Palmer Drive intersection was evaluated for the AM and PM peak hours for Opening Year (2018) and Design Year (2038) conditions. This analysis was conducted using Synchro for unsignalized (one-way and two-way stop control) and signalized control, and using Sidra for roundabout control. It should be noted that the capacity analysis from the previous study did not include Peak Hour Factor (PHF) analysis. Although typical ODOT analysis parameters allow use of default PHFs for design conditions, for this location considering the large amount of school traffic, it is appropriate and necessary to include PHFs in the capacity analysis to assure acceptable operations. The PHFs from the 2014 intersection counts were used for all analyses. Acceptable operations are defined as Level-of-Service (LOS) D or better following the Highway Capacity Manual criteria for LOS according to average vehicular delay. Below is a description of the scenarios that were analyzed for this study:

No Build with Existing Conditions: This scenario presents the intersection capacity results for the No Build traffic volumes (2014 traffic counts plus background growth and Middle School traffic from previous study – defined as background traffic volumes from this point forward) and the existing one-way stop control with existing lane configurations at the study intersection:

<u>Build with Existing Conditions</u>: This scenario presents the intersection capacity results for the Build traffic volumes (background traffic volumes <u>plus site traffic</u>) under two-way stop control with existing lane configurations and a two-lane approach for the site driveway (West leg / eastbound approach) of the study intersection;

THE MANNIK & SMITH GROUP, INC.
J1840001.RPT.SAD.Trafficimpactstatement.Docx

<u>No Build with Temporary Signal:</u> This scenario presents the intersection capacity results for the No Build traffic volumes (background traffic volumes) with the installation of a temporary, actuated, two-phase traffic signal and no changes to the existing lane configurations.

<u>Build with Temporary Signal:</u> This scenario presents the intersection capacity results for the Build traffic volumes (background traffic volumes <u>plus site traffic</u>) with the installation of a temporary, actuated, two-phase traffic signal and no changes to the existing lane configurations.

<u>Build Roundabout</u>: This scenario presents the intersection capacity results for the Build traffic volumes (background traffic volumes plus site traffic) with the installation of a roundabout and the required lane configurations for acceptable operations.

Table 1.3 presents a summary of the intersection capacity analysis for the scenarios described above. Capacity analysis output reports are provided in the attachments to this memo.

	THE RESERVE OF THE PERSON NAMED IN	ld w/Ex.	The second secon	w/Ex.	THE THE RESERVE THE THE PERSON OF THE PERSON	w/Temp Build w/Temp Signal Build R			Build Ro	Roundabout	
Approach		itions	2018	itions 2038	2018	nal 2038	2018				
AM Peak Hour											
Northbound (Jefferson Ave)	A/0.0 s	A/0.0 s	A/1.2 s	A/1.2 s	A/9.5 s	B/13.3 s	B/12.5 s	B/16.6 s	A/9.2 s	A/9.2 s	
Southbound (Jefferson Ave)	B/11.1 s	B/14.4 s	B/10.4 s	B/13.4 s	F/349.9 s	F/440.7 s	F/235.7 s	F/447.5 s	D/33.1 s	E/36.5	
Eastbound (Site Drive)	NA	NA	F*	F*	NA	NA	C/26.3 s	B/19.5 s	C/16.9 s	C/18.4	
Westbound (Palmer Drive)	F*	F*	F*	F*	F/110.1 s	F/291.5 s	F/195.9 s	F/188.7 s	C/17.0 s	C/17.5	
Intersection Overall	F*	F*	F*	F*	F/177.5 s	F/262.6 s	F/144.2 s	F/224.7 s	C/20.8 s	C/22.4	
				PM Pea	ık Hour						
Northbound (Jefferson Ave)	A/0.0 s	A/0.0 s	A/1.5 s	A/1.5s	A/9.2 s	B/10.1 s	B.10.1 s	B/12.5 s	A/6.4 s	A/6.4 s	
Southbound (Jefferson Ave)	A/5.0 s	A/5.5 s	A/4.4 s	A/4.9 s	C/29.8 s	E/78.9 s	B/15.4 s	C/27.6 s	B/11.7 s	B/11.9	
Eastbound (Site Drive)	NA	NA	F/121.9 s	F/313.0 s	NA	NA	B/16.2 s	B/18.0 s	A/8.5 s	A/8.3 s	
Westbound (Palmer Drive)	F/152.8 s	F/405.9 s	F/464.8 s	F*	B/15.6 s	C/31.0 s	C/29.2 s	D/47.4 s	B/12.3 s	B/12.6	
Intersection Overall	E/42.8 s	F/105.3 s	F/123.9 s	F*	B/18.6 s	D/41.1 s	B/17.0 s	C/26.2 s	A/9.8 s	A/9.9	

^{*-} Delay cannot be calculated, exceeds 1,000 seconds

Discussion

As shown in the table above, neither the existing conditions (one or two way stop control) nor the temporary signal will adequately serve even the No Build traffic volumes. The addition of site traffic actually lessens the intersection delays because of pass-by reductions to critical movements which were already operating poorly (southbound left turn, westbound left turn). The primary cause of the failing operations is the high-demand southbound left-turn movement in the AM peak hour with a low PHF (0.56). Therefore, the temporary signal with existing lane configurations is not a viable short term solution until the roundabout can be installed. A temporary signal option with additional lanes (northbound and southbound left-turn lanes, and a westbound left turn lane) would result in adequate operations, however the expense of this installation would likely be greater than the roundabout option and it would be less safe than a roundabout and have more delay.

The Build Roundabout configuration necessary to adequately serve traffic demand consists of a single circulating lane and a single lane entry and exit on all legs except for the northbound approach, which will require a two-lane approach with a right-turn lane in the Opening Year (2018). A secondary design option would be to re-connect the existing Palmer Drive leg south

THE MANNIK & SMITH GROUP, INC.
J1840001.RPT.SAD.Trafficimpactstatement.Docx

3

NA - Not Applicable

of the bend to the west to connect with northbound SR 66 (Jefferson Avenue) as a one-way (northbound only) right turn bypass lane. It should be noted that this configuration would require a stop controlled approach to Palmer Drive on the east leg of the roundabout. As shown in the table, this roundabout configuration would operate acceptably in the Opening Year (2018), although the southbound approach would be at LOS D and at some point before the Design Year (2038) this approach would slip to LOS E (increase of only 3.4 seconds of delay). Given the minor increase in delay and the lack of conflicts for the queue (there is approximately 750 feet of storage from the roundabout to Hampton Avenue to the north, and the Design Year (2038) queue length is listed in the Sidra report as being 630 feet), it appears that the roundabout configuration is an acceptable long term improvement option for the intersection.

Conclusions

Upon analysis of the background conditions at the SR 66 (Jefferson Avenue) intersection with Palmer Drive considering the Peak Hour Factor, the intersection would operate at LOS F with no changes made to traffic control or lane configurations after the opening of the Defiance Combined Middle School/High School building in January 2018. The addition of site traffic from the proposed three-restaurant development would not significantly change the intersection delays or operations.

The analysis presented in this memo shows that while a temporary traffic signal without lane additions would provide an improvement to intersection operations compared to the existing conditions, it will still result in an overall LOS F with most approaches operating poorly. A single lane roundabout with single lane entries and exits except for an additional right-turn only lane on the northbound approach would provide acceptable overall operations in both the Opening Year (2018) and the Design Year (2038). It is recommended that the City seeks funding for the design and construction of the roundabout, possibly via the OPWC grant/loan program. If the OPWC funding option is not successful, there are also State Infrastructure Bank (SIB) loan programs for low interest loans/bonds as an alternative option. The poor operations of the intersection are a result of primarily the added traffic from the new school facility complex (per the results of the School Traffic Study and the Feasibility Study) and the proposed restaurants will add to the poor conditions. It is recommended that potential contributions from both the Schools and Developer be discussed with the City of Defiance to determine what is appropriate, as all parties (and the public) would benefit from the installation of a roundabout at this location that would allow traffic to function through the year 2038.

If the intersection were to be left as two-way stop control until the roundabout could be constructed, it is likely that the southbound left-turning traffic bound for the school complex would utilize other routes (Greenler Road to Cleveland Avenue to Palmer Drive) should delays become excessive and delays for the network would come to an equilibrium, though they would likely be LOS F. It is also recommended that the City closely monitor the intersection upon the opening of the Combined School facility to determine if the temporary signal or other means of traffic control (law enforcement officer directing traffic during school arrival and dismissal periods) is necessary for the short term. This may be an acceptable solution should the City desire to avoid the wasteful expenditures of a temporary traffic signal if the roundabout installation can be expedited.

THE MANNIK & SMITH GROUP, INC.
J1840001.RPT.SAD.Trafficimpactstatement.Docx

2018 NO BUILD VOLUMES

2038 NO BUILD VOLUMES

SITE TRIPS

2018 FUTURE BUILD VOLUMES

2038 FUTURE BUILD VOLUMES

Mannik Smith GROUP TECHNICAL SKILL. CREATIVE SPIRIT. FIGURE 1
DEFIANCE DEVELOPMENT
TRAFFIC VOLUMES

LEGEND

2/1 = AM/PM COUNTS

+2/+1 = AM/PM SITE TRIPS

Traffic Impact Study Defiance City Schools

Figure 7 – 2017 Build Condition Peak Hour Volumes

Traffic Impact Study Defiance City Schools

Figure 8 – 2037 Build Condition Peak Hour Volumes

1: SR 66 & Site Driveway/Palmer Dr HCM Unsignalized Intersection Capacity Analysis

Defiance Traffic Impact Study Stop Contolled - No Build 2018 AM

	Þ	-	*	1	←	*	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	7>			4			4			4	
Traffic Volume (veh/h)	0	0	0	107	0	212	0	237	155	268	183	0
Future Volume (Veh/h)	0	0	0	107	0	212	0	237	155	268	183	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.64	0.92	0.68	0.92	0.82	0.55	0.56	0.69	0.92
Hourly flow rate (vph)	0	0	0	167	0	312	0	289	282	479	265	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1965	1794	265	1653	1653	430	265			571		
vC1, stage 1 conf vol			54 H 26									
vC2, stage 2 conf vol												
vCu, unblocked vol	1965	1794	265	1653	1653	430	265			571		
tC, single (s)	7.1	6.5	6.2	7.2	6.5	6.4	4.1			4.3		
tC, 2 stage (s)			SERVICE S									
tF (s)	3.5	4.0	3.3	3.6	4.0	3.5	2.2			2.4		
p0 queue free %	100	100	100	0	100	48	100			49		
cM capacity (veh/h)	13	39	774	45	48	595	1299			931		
		EB 2	WB 1	NB 1	SB 1	C SEATON EAST	EAST-CASE	Carrier Constitution		YATES		0/50-160
Direction, Lane # Volume Total	EB 1	0	479	571	744							
Volume Left	0	0	167	0	479							
	0	0	312	282	0							
Volume Right			112	1299	931							
cSH	1700	1700	4.27	0.00	0.51							
Volume to Capacity	0.00	0.00	4.27 Err		75							
Queue Length 95th (ft)	0	0		0	11.1							
Control Delay (s)	0.0	0.0	Err	0.0								
Lane LOS	A	Α	F	0.0	В							
Approach Delay (s)	0.0		Err	0.0	11.1							
Approach LOS	Α		F									
Intersection Summary												
Average Delay			2674.3									
Intersection Capacity Utiliza	ation		75.4%	IC	U Level c	of Service			D			
Analysis Period (min)			15									

Defiance Traffic Impact Study Stop Contolled - No Build 2018 AM

1: SR 66 & Site Driveway/Palmer Dr HCM Unsignalized Intersection Capacity Analysis

Defiance Traffic Impact Study Stop Contolled - No Build 2018 PM

	*	-	*	1	-	4	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	7.			44			4			4	
Traffic Volume (veh/h)	0	0	0	86	0	118	0	240	97	111	269	0
Future Volume (Veh/h)	0	0	0	86	0	118	0	240	97	111	269	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.69	0.92	0.51	0.92	0.65	0.88	0.58	0.89	0.92
Hourly flow rate (vph)	0	0	0	125	0	231	0	369	110	191	302	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1339	1163	302	1108	1108	424	302			479		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1339	1163	302	1108	1108	424	302			479		
tC, single (s)	7.1	6.5	6.2	7.2	6.5	6.4	4.1			4.3		
tC, 2 stage (s)												
tF(s)	3.5	4.0	3.3	3.6	4.0	3.5	2.2			2.4		
o0 queue free %	100	100	100	19	100	61	100			81		
cM capacity (veh/h)	68	158	738	154	170	599	1259			1010		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							893
Volume Total	0	0	356	479	493		A-12					
Volume Left	0	0	125	0	191							
Volume Right	0	0	231	110	0							
SH	1700	1700	298	1259	1010							
Volume to Capacity	0.00	0.00	1.20	0.00	0.19							
Queue Length 95th (ft)	0	0	394	0	17							
Control Delay (s)	0.0	0.0	152.8	0.0	5.0							
ane LOS	Α	Α	F		Α							
Approach Delay (s)	0.0		152.8	0.0	5.0							
Approach LOS	Α		F									
ntersection Summary												
Average Delay			42.8									
ntersection Capacity Utilizat	ion		60.8%	IC	U Level o	f Service			В			
Analysis Period (min)			15									

Defiance Traffic Impact Study Stop Contolled - No Build 2018 PM

1: SR 66 & Site Driveway/Palmer Dr HCM Unsignalized Intersection Capacity Analysis

Defiance Traffic Impact Study Stop Contolled - No Build 2038 AM

Lane Configurations	NBT	NBR	SBL	SBT	-
Traffic Volume (veh/h) 0 0 0 119 0 232 0 Future Volume (Veh/h) 0 0 0 119 0 232 0 Sign Control Stop Stop Grade 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.64 0.92 0.68 0.92 Hourly flow rate (vph) 0 0 0 186 0 341 0 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1			STREET, SQUARE, SALES	ODI	SBR
Future Volume (Veh/h) 0 0 0 119 0 232 0 Sign Control Stop Stop Grade 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.64 0.92 0.68 0.92 Hourly flow rate (vph) 0 0 0 186 0 341 0 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol vCu, unblocked vol vCu, unblocked vol vCu, unblocked vol vCu, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1	000			4	
Sign Control Stop Stop Grade 0% 0% Peak Hour Factor 0.92 0.92 0.64 0.92 0.68 0.92 Hourly flow rate (vph) 0 0 0 186 0 341 0 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1	289	175	295	224	0
Grade 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.64 0.92 0.68 0.92 Hourly flow rate (vph) 0 0 0 186 0 341 0 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median storage veh) Upstream signal (ft) PX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1	289	175	295	224	. 0
Peak Hour Factor 0.92 0.92 0.92 0.64 0.92 0.68 0.92 Hourly flow rate (vph) 0 0 0 186 0 341 0 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol vCu, unblocked vol vCu, unblocked vol vCu, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1	Free			Free	
Hourly flow rate (vph) 0 0 0 186 0 341 0 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1	0%			0%	
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1	0.82	0.55	0.56	0.69	0.92
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vC4, unblocked vol vC4, unblocked vol vC5, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1	352	318	527	325	0
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1	None			None	
Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
pX, platoon unblocked vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
vC, conflicting volume 2231 2049 325 1890 1890 511 325 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1			670		
vC2, stage 2 conf vol vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
vCu, unblocked vol 2231 2049 325 1890 1890 511 325 tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1					
tC, single (s) 7.1 6.5 6.2 7.2 6.5 6.4 4.1			670		
, 0 , ,			4.3		
tC, 2 stage (s)					
tF (s) 3.5 4.0 3.3 3.6 4.0 3.5 2.2			2.4		
p0 queue free % 100 100 100 0 100 36 100			38		
cM capacity (veh/h) 6 21 716 26 27 534 1235			853		
	SET SHOWE OF				
Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 Volume Total 0 0 527 670 852					
Volume Left 0 0 186 0 527					
Volume Right 0 0 341 318 0					
cSH 1700 1700 67 1235 853					
Volume to Capacity 0.00 0.00 7.86 0.00 0.62					
Queue Length 95th (ft) 0 0 Err 0 109					
Control Delay (s) 0.0 0.0 Err 0.0 14.4					
Lane LOS A A F B					
Approach Delay (s) 0.0 Err 0.0 14.4					
Approach LOS A F					
Intersection Summary					
Average Delay 2577.7					
Intersection Capacity Utilization 84.9% ICU Level of Service					
Analysis Period (min) 15		E			

Defiance Traffic Impact Study Stop Contolled - No Build 2038 AM

1: SR 66 & Site Driveway/Palmer Dr HCM Unsignalized Intersection Capacity Analysis

Defiance Traffic Impact Study Stop Contolled - No Build 2038 PM

	۶	→	*	1	←	4	4	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	7>			4			4			4	
Traffic Volume (veh/h)	0	0	0	98	0	129	0	293	113	122	328	0
Future Volume (Veh/h)	0	0	0	98	0	129	0	293	113	122	328	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.69	0.92	0.51	0.92	0.65	0.88	0.58	0.89	0.92
Hourly flow rate (vph)	0	0	0	142	0	253	0	451	128	210	369	0
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1557	1368	369	1304	1304	515	369			579		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1557	1368	369	1304	1304	515	369			579		
tC, single (s)	7.1	6.5	6.2	7.2	6.5	6.4	4.1			4.3		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.6	4.0	3.5	2.2			2.4		
p0 queue free %	100	100	100	0	100	52	100			77		
cM capacity (veh/h)	40	113	677	109	124	531	1190			925		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1			1990				
Volume Total	0	0	395	579	579		-					
Volume Left	0	0	142	0	210							
Volume Right	0	0	253	128	0							
cSH	1700	1700	222	1190	925							
Volume to Capacity	0.00	0.00	1.78	0.00	0.23							
Queue Length 95th (ft)	0.00	0.00	677	0.00	22							
Control Delay (s)	0.0	0.0	405.9	0.0	5.5							
Lane LOS	Α	Α	403.5 F	0.0	Α.							
Approach Delay (s)	0.0	^	405.9	0.0	5.5							
Approach LOS	Α		400.9 F	0.0	5.5							
Intersection Summary												
Average Delay			105.3									
Intersection Capacity Utiliza	ation		69.7%	IC	U Level o	Service			С			
Analysis Period (min)			15									

Defiance Traffic Impact Study Stop Contolled - No Build 2038 PM

1: SR 66 & Site Driveway/Palmer Dr HCM Unsignalized Intersection Capacity Analysis

Defiance Traffic Impact Study Stop Contolled - Build 2018 AM

	۶	-	*	1	4	4	4	†	-	-	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	7>			4			4			4	
Traffic Volume (veh/h)	48	38	56	104	42	205	51	230	150	259	177	61
Future Volume (Veh/h)	48	38	56	104	42	205	51	230	150	259	177	61
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.64	0.92	0.68	0.92	0.82	0.55	0.56	0.69	0.92
Hourly flow rate (vph)	52	41	61	163	46	301	55	280	273	463	257	66
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	2066	1879	290	1824	1776	416	323			553		
vC1, stage 1 conf vol	2000	1075	200	1024	1770		020					
vC2, stage 2 conf vol												
vCu, unblocked vol	2066	1879	290	1824	1776	416	323			553		
tC, single (s)	7.1	6.5	6.2	7.2	6.5	6.4	4.1			4.3		
tC, 2 stage (s)		0.0	0.2	1.2	0.0	0.4	Y TARRELL IN			1.0		
tF (s)	3.5	4.0	3.3	3.6	4.0	3.5	2.2			2.4		
p0 queue free %	0	0	92	0	0	50	96			51		
cM capacity (veh/h)	0	35	749	0	40	605	1237			946		
Part of the Control o						003	1201			340		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total	52	102	510	608	786							
Volume Left	52	0	163	55	463							
Volume Right	0	61	301	273	66							
cSH	0	81	0	1237	946							
Volume to Capacity	Err	1.26	Err	0.04	0.49							
Queue Length 95th (ft)	Err	191	Err	3	69							
Control Delay (s)	Err	277.4	Err	1.2	10.4							
Lane LOS	F	F	F	Α	В							
Approach Delay (s)	Err		Err	1.2	10.4							
Approach LOS	F		F									
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utiliza	tion		88.7%	IC	U Level o	of Service			Ε			
Analysis Period (min)			15									

Defiance Traffic Impact Study Stop Contolled - Build 2018 AM

1: SR 66 & Site Driveway/Palmer Dr HCM Unsignalized Intersection Capacity Analysis

Defiance Traffic Impact Study Stop Contolled - Build 2018 PM

	1	→	*	1	←	1	4	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	7			4			4			4	
Traffic Volume (veh/h)	52	31	59	79	36	108	58	220	89	102	247	65
Future Volume (Veh/h)	52	31	59	79	36	108	58	220	89	102	247	65
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.69	0.92	0.51	0.92	0.65	0.88	0.58	0.89	0.92
Hourly flow rate (vph)	57	34	64	114	39	212	63	338	101	176	278	71
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1412	1230	314	1261	1216	388	349			439		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1412	1230	314	1261	1216	388	349			439		
tC, single (s)	7.1	6.5	6.2	7.2	6.5	6.4	4.1			4.3		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.6	4.0	3.5	2.2			2.4		
p0 queue free %	0	76	91	0	73	66	95			83		
cM capacity (veh/h)	51	140	727	88	143	628	1210			1046		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1				518111			
Volume Total	57	98	365	502	525							
Volume Left	57	0	114	63	176							
Volume Right	0	64	212	101	71							
cSH	51	296	192	1210	1046							
Volume to Capacity	1.12	0.33	1.90	0.05	0.17							
Queue Length 95th (ft)	125	35	668	4	15							
Control Delay (s)	291.7	23.1	464.8	1.5	4.4							
Lane LOS	F	C	F	A	Α							
Approach Delay (s)	121.9	O	464.8	1.5	4.4							
Approach LOS	F		F	1.0								
ntersection Summary										Species 1	Street Co.	
Average Delay			123.9									
ntersection Capacity Utiliza	ation		62.2%	IC	U Level o	f Service			В			
Analysis Period (min)			15									

Defiance Traffic Impact Study Stop Contolled - Build 2018 PM

1: SR 66 & Site Driveway/Palmer Dr HCM Unsignalized Intersection Capacity Analysis

Defiance Traffic Impact Study Stop Contolled - Build 2038 AM

	1	→	*	1	•	*	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	f)			44			4	W.		4	
Traffic Volume (veh/h)	48	38	56	116	42	225	51	282	170	286	218	61
Future Volume (Veh/h)	48	38	56	116	42	225	51	282	170	286	218	61
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.64	0.92	0.68	0.92	0.82	0.55	0.56	0.69	0.92
Hourly flow rate (vph)	52	41	61	181	46	331	55	344	309	511	316	66
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	2334	2134	349	2061	2012	498	382			653		
vC1, stage 1 conf vol	2001			EAST OF	HARAGE TO THE	100						
vC2, stage 2 conf vol												
vCu, unblocked vol	2334	2134	349	2061	2012	498	382			653		
tC, single (s)	7.1	6.5	6.2	7.2	6.5	6.4	4.1			4.3		
tC, 2 stage (s)		0.0	70.2		0.0							
tF (s)	3.5	4.0	3.3	3.6	4.0	3.5	2.2			2.4		
p0 queue free %	0	0	91	0	0	39	95			41		
cM capacity (veh/h)	0	19	694	0	23	543	1176			866		
	3903	550.995		516/4		343	1170			000		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total	52	102	558	708	893							
Volume Left	52	0	181	55	511							
Volume Right	0	61	331	309	66							
cSH	0	46	0	1176	866							
Volume to Capacity	Err	2.22	Err	0.05	0.59							
Queue Length 95th (ft)	Err	265	Err	4	99							
Control Delay (s)	Err	747.3	Err	1.2	13.4							
Lane LOS	F	F	F	Α	В							
Approach Delay (s)	Err		Err	1.2	13.4							
Approach LOS	F		F									
Intersection Summary												
Average Delay			Err			NAME:						
Intersection Capacity Utiliza	ition		98.2%	IC	U Level o	f Service			F			
Analysis Period (min)			15									

Defiance Traffic Impact Study Stop Contolled - Build 2038 AM

1: SR 66 & Site Driveway/Palmer Dr HCM Unsignalized Intersection Capacity Analysis

Defiance Traffic Impact Study Stop Contolled - Build 2038 PM

	•	-	*	1	←		4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	ሻ	7>			4			4			4	
Traffic Volume (veh/h)	52	31	59	91	36	119	58	273	105	113	306	65
Future Volume (Veh/h)	52	31	59	91	36	119	58	273	105	113	306	65
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.69	0.92	0.51	0.92	0.65	0.88	0.58	0.89	0.92
Hourly flow rate (vph)	57	34	64	132	39	233	63	420	119	195	344	71
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1628	1434	380	1456	1410	480	415			539		
vC1, stage 1 conf vol	5 HERRISA					HE HE IN						
vC2, stage 2 conf vol												
vCu, unblocked vol	1628	1434	380	1456	1410	480	415			539		
tC, single (s)	7.1	6.5	6.2	7.2	6.5	6.4	4.1			4.3		
tC, 2 stage (s)					K HEED!							
tF (s)	3.5	4.0	3.3	3.6	4.0	3.5	2.2			2.4		
p0 queue free %	0	66	90	0	63	58	94			80		
cM capacity (veh/h)	28	101	667	57	104	557	1144			958		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1							
Volume Total	57	98	404	602	610							
Volume Left	57	0	132	63	195							
Volume Right	0	64	233	119	71							
cSH	28	226	129	1144	958							
Volume to Capacity	2.06	0.43	3.13	0.06	0.20							
Queue Length 95th (ft)	170	51	Err	4	19							
Control Delay (s)	795.1	32.6	Err	1.5	4.9							
Lane LOS	F	D	F	A	A							
Approach Delay (s)	313.0		Err	1.5	4.9							
Approach LOS	F		F									
ntersection Summary												
Average Delay			2310.5									
ntersection Capacity Utiliza	ation		71.4%	IC	U Level o	f Service			С			
Analysis Period (min)			15									

Defiance Traffic Impact Study Stop Contolled - Build 2038 PM

1: SR 66 & Site Driveway/Palmer Dr HCM Signalized Intersection Capacity Analysis

Defiance Traffic Impact Study Signalized - No Build 2018 AM

	۶	→	*	•	•	*	4	†	-	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>			4			4			4	
Traffic Volume (vph)	0	0	0	107	0	212	0	237	155	268	183	0
Future Volume (vph)	0	0	0	107	0	212	0	237	155	268	183	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5			4.5			4.5	
Lane Util. Factor					1.00			1.00	J. CAR		1.00	
Frt					0.91			0.93			1.00	
Flt Protected					0.98			1.00			0.97	
Satd. Flow (prot)					1487			1650			1628	
Flt Permitted					0.88			1.00			0.42	
Satd. Flow (perm)					1337			1650			703	
Peak-hour factor, PHF	0.92	0.92	0.92	0.64	0.92	0.68	0.92	0.82	0.55	0.56	0.69	0.92
Adj. Flow (vph)	0	0	0	167	0	312	0	289	282	479	265	0
RTOR Reduction (vph)	0	0	0	0	96	0	0	50	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	383	0	0	521	0	0	744	0
Heavy Vehicles (%)	2%	2%	2%	10%	2%	17%	2%	8%	7%	17%	6%	2%
Turn Type	Perm			Perm	NA			NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)					18.0			43.0			43.0	
Effective Green, g (s)					18.0			43.0			43.0	
Actuated g/C Ratio					0.26			0.61			0.61	
Clearance Time (s)					4.5			4.5			4.5	
Vehicle Extension (s)					3.0			3.0		Roller &	3.0	
Lane Grp Cap (vph)					343			1013	0 0	700-000	431	
v/s Ratio Prot								0.32				
v/s Ratio Perm					c0.29						c1.06	
v/c Ratio					1.12			0.51			1.73	
Uniform Delay, d1					26.0			7.6			13.5	
Progression Factor					1.00			1.00			1.00	
Incremental Delay, d2					84.1			1.9			336.4	
Delay (s)					110.1			9.5			349.9	
Level of Service					F			Α			F	
Approach Delay (s)		0.0			110.1			9.5			349.9	
Approach LOS		Α			F			Α			F	
Intersection Summary												
HCM 2000 Control Delay			177.5	HC	CM 2000 I	Level of S	Service		F			
HCM 2000 Volume to Capacity	/ ratio		1.54									
Actuated Cycle Length (s)			70.0		m of lost				9.0			
Intersection Capacity Utilization	n		76.6%	IC	U Level o	f Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Defiance Traffic Impact Study Signalized - No Build 2018 AM

1: SR 66 & Site Driveway/Palmer Dr HCM Signalized Intersection Capacity Analysis

Defiance Traffic Impact Study Signalized - No Build 2018 PM

	1	→	*	1	←	4	4	†	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Y.	1			4			4			4	
Traffic Volume (vph)	0	0	0	86	0	118	0	240	97	111	269	0
Future Volume (vph)	0	0	0	86	0	118	0	240	97	111	269	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5			4.5			4.5	
Lane Util. Factor					1.00			1.00			1.00	
Frt					0.91			0.97			1.00	
Flt Protected					0.98			1.00			0.98	
Satd. Flow (prot)					1487			1708			1690	
Flt Permitted					0.88			1.00			0.61	
Satd. Flow (perm)					1337			1708			1055	
Peak-hour factor, PHF	0.92	0.92	0.92	0.69	0.92	0.51	0.92	0.65	0.88	0.58	0.89	0.92
Adj. Flow (vph)	0	0	0	125	0	231	0	369	110	191	302	0
RTOR Reduction (vph)	0	0	0	0	150	0	0	19	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	206	0	0	460	0	0	493	0
Heavy Vehicles (%)	2%	2%	2%	10%	2%	17%	2%	8%	7%	17%	6%	2%
Turn Type	Perm			Perm	NA			NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)					12.6			23.5			23.5	
Effective Green, g (s)					12.6			23.5			23.5	
Actuated g/C Ratio					0.28			0.52			0.52	
Clearance Time (s)					4.5			4.5			4.5	
Vehicle Extension (s)				TROP	3.0			3.0			3.0	
Lane Grp Cap (vph)					373			889			549	
v/s Ratio Prot								0.27				
v/s Ratio Perm					c0.15						c0.47	
v/c Ratio					0.55			0.52			0.90	
Uniform Delay, d1					13.8			7.1			9.7	
Progression Factor					1.00			1.00			1.00	
Incremental Delay, d2					1.8			2.1			20.1	
Delay (s)					15.6			9.2			29.8	
Level of Service					В			Α			С	
Approach Delay (s)		0.0			15.6			9.2			29.8	
Approach LOS		Α			В			Α			С	
Intersection Summary												
HCM 2000 Control Delay			18.6	H	CM 2000	Level of S	ervice		В			· ·
HCM 2000 Volume to Capacity	ratio		0.78									
Actuated Cycle Length (s)			45.1		ım of lost				9.0			
Intersection Capacity Utilization	n		62.1%	IC	U Level o	f Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Defiance Traffic Impact Study Signalized - No Build 2018 PM

1: SR 66 & Site Driveway/Palmer Dr HCM Signalized Intersection Capacity Analysis

Defiance Traffic Impact Study Signalized- No Build 2038 AM

	٨	\rightarrow	*	•	←	*	4	†	~	1	\downarrow	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	N.	4			4			4			4	
Traffic Volume (vph)	0	0	0	119	0	232	0	289	175	295	224	0
Future Volume (vph)	0	0	0	119	0	232	0	289	175	295	224	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5			4.5			4.5	
Lane Util. Factor					1.00			1.00			1.00	
Frt					0.91			0.94			1.00	
Flt Protected					0.98			1.00			0.97	
Satd. Flow (prot)					1488			1654			1634	
Flt Permitted					0.88			1.00			0.38	
Satd. Flow (perm)	100				1336			1654			641	
Peak-hour factor, PHF	0.92	0.92	0.92	0.64	0.92	0.68	0.92	0.82	0.55	0.56	0.69	0.92
Adj. Flow (vph)	0	0	0	186	0	341	0	352	318	527	325	0
RTOR Reduction (vph)	0	0	0	0	44	0	0	22	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	483	0	0	648	0	0	852	0
Heavy Vehicles (%)	2%	2%	2%	10%	2%	17%	2%	8%	7%	17%	6%	2%
Turn Type	Perm			Perm	NA			NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)					36.5			104.5			104.5	
Effective Green, g (s)					36.5			104.5			104.5	
Actuated g/C Ratio					0.24			0.70			0.70	
Clearance Time (s)					4.5			4.5			4.5	
Vehicle Extension (s)					3.0			3.0			3.0	E ME
Lane Grp Cap (vph)					325			1152			446	
v/s Ratio Prot								0.39				
v/s Ratio Perm					c0.36						c1.33	
v/c Ratio					1.49			0.56			1.91	
Uniform Delay, d1					56.8			11.4			22.8	
Progression Factor					1.00			1.00			1.00	
Incremental Delay, d2					234.7			2.0			417.9	
Delay (s)					291.5			13.3			440.7	
Level of Service					F			В			F	
Approach Delay (s)		0.0			291.5			13.3			440.7	
Approach LOS		Α			F			В			F	
Intersection Summary												
HCM 2000 Control Delay			262.6	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacity	ratio		1.80									
Actuated Cycle Length (s)			150.0		um of lost				9.0			
Intersection Capacity Utilization	n		86.1%	IC	U Level o	of Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

Defiance Traffic Impact Study Signalized- No Build 2038 AM

1: SR 66 & Site Driveway/Palmer Dr HCM Signalized Intersection Capacity Analysis

Defiance Traffic Impact Study Signalized - No Build 2038 PM

	۶	→	*	1	-	4	4	†	~	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ.			4			4			4	
Traffic Volume (vph)	0	0	0	98	0	129	0	293	113	122	328	0
Future Volume (vph)	0	0	0	98	0	129	0	293	113	122	328	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5			4.5			4.5	
Lane Util. Factor					1.00			1.00			1.00	
Frt					0.91			0.97			1.00	
Flt Protected					0.98			1.00			0.98	
Satd. Flow (prot)					1489			1710			1697	
FIt Permitted					0.88			1.00			0.53	
Satd. Flow (perm)					1335			1710			922	
Peak-hour factor, PHF	0.92	0.92	0.92	0.69	0.92	0.51	0.92	0.65	0.88	0.58	0.89	0.92
Adj. Flow (vph)	0	0	0	142	0	253	0	451	128	210	369	0
RTOR Reduction (vph)	0	0	0	0	112	0	0	16	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	283	0	0	563	0	0	579	0
Heavy Vehicles (%)	2%	2%	2%	10%	2%	17%	2%	8%	7%	17%	6%	2%
Turn Type	Perm			Perm	NA			NA		Perm	NA	
Protected Phases		4		Name of the last	8			2		STEEL STEEL	6	
Permitted Phases	4	on the second		8			2			6		
Actuated Green, G (s)				71077	15.4			33.1			33.1	
Effective Green, g (s)					15.4			33.1			33.1	
Actuated g/C Ratio					0.27			0.58			0.58	
Clearance Time (s)					4.5			4.5			4.5	
Vehicle Extension (s)					3.0			3.0			3.0	
Lane Grp Cap (vph)					357			984			530	
v/s Ratio Prot								0.33				
v/s Ratio Perm					c0.21						c0.63	
v/c Ratio					0.79			0.57			1.09	
Uniform Delay, d1					19.6			7.7			12.2	
Progression Factor					1.00			1.00			1.00	
Incremental Delay, d2					11.4			2.4			66.7	
Delay (s)					31.0			10.1			78.9	
Level of Service					С			В			Е	
Approach Delay (s)		0.0			31.0			10.1			78.9	
Approach LOS		А			С			В			Е	
Intersection Summary	The Zerral	sensatnen	Service of the	New York Control	e se en	el comence de la		S-7-15-56		restava (m. 1	Turnie iza 1940	(da.e. 25)
HCM 2000 Control Delay			41.1	H	CM 2000	Level of S	Service		D			ALC: NO
HCM 2000 Volume to Capacity	ratio		1.00		OW 2000	LCVCI OI C	JCI VICC					
Actuated Cycle Length (s)	Tatio		57.5	Sı	um of lost	time (s)			9.0			
Intersection Capacity Utilization			70.9%			of Service			C			
Analysis Period (min)			15	10	LOVOIC	, OUI VIOC			U			
c Critical Lane Group			10									
o ontrodi Edito Oroup												

Defiance Traffic Impact Study Signalized - No Build 2038 PM

1: SR 66 & Site Driveway/Palmer Dr HCM Signalized Intersection Capacity Analysis

Defiance Traffic Impact Study Signalized - Build 2018 AM

	۶	-	*	1	4	4	4	†	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	f)			43			4			4	
Traffic Volume (vph)	48	38	56	104	42	205	51	230	150	259	177	61
Future Volume (vph)	48	38	56	104	42	205	51	230	150	259	177	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5			4.5	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frt	1.00	0.91			0.92			0.94			0.99	
Flt Protected	0.95	1.00			0.98			1.00			0.97	
Satd. Flow (prot)	1770	1696			1518			1660			1627	
Flt Permitted	0.35	1.00			0.85			0.89			0.50	
Satd. Flow (perm)	643	1696			1317			1479			837	
Peak-hour factor, PHF	0.92	0.92	0.92	0.64	0.92	0.68	0.92	0.82	0.55	0.56	0.69	0.92
Adj. Flow (vph)	52	41	61	162	46	301	55	280	273	462	257	66
RTOR Reduction (vph)	0	45	0	0	58	0	0	33	0	0	4	0
Lane Group Flow (vph)	52	57	0	0	452	0	0	576	0	0	782	0
Heavy Vehicles (%)	2%	2%	2%	10%	2%	17%	2%	8%	7%	17%	6%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	23.5	23.5			23.5			57.5			57.5	
Effective Green, g (s)	23.5	23.5			23.5			57.5			57.5	
Actuated g/C Ratio	0.26	0.26			0.26			0.64			0.64	
Clearance Time (s)	4.5	4.5			4.5			4.5			4.5	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)	167	442			343			944			534	
v/s Ratio Prot		0.03										
v/s Ratio Perm	0.08				c0.34			0.39			c0.93	
v/c Ratio	0.31	0.13			1.32			0.61			1.47	
Uniform Delay, d1	26.7	25.4			33.2			9.6			16.2	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	1.1	0.1			162.6			2.9			219.4	
Delay (s)	27.8	25.6			195.9			12.5			235.7	
Level of Service	С	С			F			В			F	
Approach Delay (s)		26.3			195.9			12.5			235.7	
Approach LOS		С			F			В			F	
Intersection Summary												
HCM 2000 Control Delay			144.2	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacit	ty ratio		1.42									
Actuated Cycle Length (s)			90.0		um of lost				9.0			
Intersection Capacity Utilization	on		89.9%	IC	U Level o	f Service			E			
Analysis Period (min)			15									
c Critical Lane Group												

Defiance Traffic Impact Study Signalized - Build 2018 AM

1: SR 66 & Site Driveway/Palmer Dr HCM Signalized Intersection Capacity Analysis

Defiance Traffic Impact Study Signalized - Build 2018 PM

	٨	-	*	1	←	4	4	†	~	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Y	4			44			4			4	
Traffic Volume (vph)	52	31	59	79	36	108	58	220	89	102	247	65
Future Volume (vph)	52	31	59	79	36	108	58	220	89	102	247	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5			4.5	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frt	1.00	0.90			0.92			0.97			0.98	
Flt Protected	0.95	1.00			0.98			0.99			0.98	
Satd. Flow (prot)	1770	1680			1523			1716			1681	
Flt Permitted	0.45	1.00			0.86			0.90			0.73	
Satd. Flow (perm)	839	1680			1328			1547			1242	
Peak-hour factor, PHF	0.92	0.92	0.92	0.69	0.92	0.51	0.92	0.65	0.88	0.58	0.89	0.92
Adj. Flow (vph)	57	34	64	114	39	212	63	338	101	176	278	71
RTOR Reduction (vph)	0	47	0	0	88	0	0	14	0	0	9	0
Lane Group Flow (vph)	57	51	0	0	277	0	0	488	0	0	516	0
Heavy Vehicles (%)	2%	2%	2%	10%	2%	17%	2%	8%	7%	17%	6%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	15.4	15.4			15.4			32.6			32.6	
Effective Green, g (s)	15.4	15.4			15.4			32.6			32.6	
Actuated g/C Ratio	0.27	0.27			0.27			0.57			0.57	
Clearance Time (s)	4.5	4.5			4.5			4.5			4.5	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)	226	453			358			884	3100		710	
v/s Ratio Prot		0.03										
v/s Ratio Perm	0.07				c0.21			0.32			c0.42	
v/c Ratio	0.25	0.11			0.77			0.55			0.73	
Uniform Delay, d1	16.3	15.7			19.2			7.6			8.9	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	0.6	0.1			10.0			2.5			6.4	
Delay (s)	16.9	15.8			29.2			10.1			15.4	
Level of Service	В	В			C			В			В	
Approach Delay (s)		16.2			29.2			10.1			15.4	
Approach LOS		В			C			В			В	
Intersection Summary												
HCM 2000 Control Delay			17.0	Н	CM 2000 I	Level of S	Service	***************************************	В			
HCM 2000 Volume to Capacit	ty ratio		0.74									
Actuated Cycle Length (s)			57.0	Su	ım of lost	time (s)			9.0			
Intersection Capacity Utilization	on		63.0%	IC	U Level o	f Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Defiance Traffic Impact Study Signalized - Build 2018 PM

1: SR 66 & Site Driveway/Palmer Dr HCM Signalized Intersection Capacity Analysis

Defiance Traffic Impact Study Signalized- Build 2038 AM

	۶	-	*	1	←	4	4	†	1	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)			4			4			44	
Traffic Volume (vph)	48	38	56	116	42	225	51	282	170	286	218	61
Future Volume (vph)	48	38	56	116	42	225	51	282	170	286	218	61
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5			4.5	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frt	1.00	0.91			0.92			0.94			0.99	
Flt Protected	0.95	1.00			0.98			1.00			0.97	
Satd. Flow (prot)	1770	1696			1515			1663			1633	
Flt Permitted	0.35	1.00			0.85			0.89			0.46	
Satd. Flow (perm)	655	1696			1313			1488			772	
Peak-hour factor, PHF	0.92	0.92	0.92	0.64	0.92	0.68	0.92	0.82	0.55	0.56	0.69	0.92
Adj. Flow (vph)	52	41	61	181	46	331	55	344	309	511	316	66
RTOR Reduction (vph)	0	44	0	0	75	0	0	40	0	0	4	0
Lane Group Flow (vph)	52	58	0	0	483	0	0	668	0	0	889	0
Heavy Vehicles (%)	2%	2%	2%	10%	2%	17%	2%	8%	7%	17%	6%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)	19.5	19.5			19.5			41.5			41.5	
Effective Green, g (s)	19.5	19.5			19.5			41.5			41.5	
Actuated g/C Ratio	0.28	0.28			0.28			0.59			0.59	
Clearance Time (s)	4.5	4.5			4.5			4.5			4.5	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			3.0	
Lane Grp Cap (vph)	182	472			365			882			457	
v/s Ratio Prot		0.03										
v/s Ratio Perm	0.08				c0.37			0.45			c1.15	
v/c Ratio	0.29	0.12			1.32			0.76			1.95	
Uniform Delay, d1	19.8	18.9			25.2			10.5			14.2	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	0.9	0.1			163.4			6.0			433.3	
Delay (s)	20.7	19.0			188.7			16.6			447.5	
Level of Service	С	В			F			В			F	
Approach Delay (s)		19.5			188.7			16.6			447.5	
Approach LOS		В			F			В			F	
Intersection Summary					243							
HCM 2000 Control Delay			224.7	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacit	y ratio		1.74									
Actuated Cycle Length (s)			70.0		ım of lost				9.0			
Intersection Capacity Utilization	n		99.4%	IC	U Level c	of Service			F			
Analysis Period (min)			15									
c Critical Lane Group												

Defiance Traffic Impact Study Signalized- Build 2038 AM

1: SR 66 & Site Driveway/Palmer Dr HCM Signalized Intersection Capacity Analysis

Defiance Traffic Impact Study Signalized - Build 2038 PM

	۶	→	*	1	—	4	4	†	1	1	†	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4			44	*		4			4	
Traffic Volume (vph)	52	31	59	91	36	119	58	273	105	113	306	65
Future Volume (vph)	52	31	59	91	36	119	58	273	105	113	306	65
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5			4.5	
Lane Util. Factor	1.00	1.00			1.00			1.00			1.00	
Frt	1.00	0.90			0.92			0.97			0.98	
Flt Protected	0.95	1.00			0.98			0.99			0.98	
Satd. Flow (prot)	1770	1680			1522			1717			1688	
Flt Permitted	0.42	1.00			0.85			0.90			0.68	
Satd. Flow (perm)	787	1680			1320			1550			1159	
Peak-hour factor, PHF	0.92	0.92	0.92	0.69	0.92	0.51	0.92	0.65	0.88	0.58	0.89	0.92
Adj. Flow (vph)	57	34	64	132	39	233	63	420	119	195	344	71
RTOR Reduction (vph)	0	46	0	0	76	0	0	13	0	0	7	0
Lane Group Flow (vph)	57	52	0	0	328	0	0	589	0	0	603	0
Heavy Vehicles (%)	2%	2%	2%	10%	2%	17%	2%	8%	7%	17%	6%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		•	8			2			6	
Permitted Phases	4	47.0		8	47.0		2	07.5		6	07.5	
Actuated Green, G (s)	17.6	17.6			17.6			37.5			37.5	
Effective Green, g (s)	17.6	17.6			17.6			37.5			37.5	
Actuated g/C Ratio Clearance Time (s)	0.27 4.5	0.27 4.5			0.27 4.5			0.59 4.5			0.59	
Vehicle Extension (s)	3.0	3.0			3.0			3.0			4.5 3.0	
	216	461										
Lane Grp Cap (vph) v/s Ratio Prot	210	0.03			362			906			678	
v/s Ratio Perm	0.07	0.03			c0.25			0.38			c0.52	
v/c Ratio	0.26	0.11			0.91			0.65			0.89	
Uniform Delay, d1	18.2	17.4			22.4			8.9			11.5	
Progression Factor	1.00	1.00			1.00			1.00			1.00	
Incremental Delay, d2	0.7	0.1			25.2			3.6			16.1	
Delay (s)	18.8	17.5			47.6			12.5			27.6	
Level of Service	В	В			D			В			C	
Approach Delay (s)		18.0			47.6			12.5			27.6	
Approach LOS		В			D			В			С	
Intersection Summary												
HCM 2000 Control Delay			26.2	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	y ratio		0.89									
Actuated Cycle Length (s)			64.1	Sı	um of lost	time (s)			9.0			
Intersection Capacity Utilizatio	in		72.2%		U Level o				С			
Analysis Period (min)			15									
c Critical Lane Group												

Defiance Traffic Impact Study Signalized - Build 2038 PM

∀ Site: 101 [2018 AM Build]

SR 66/Palmer Roundabout Roundabout

	Demand F	HOWE	A STATE OF THE STA	Deg.	Lane	Average	Level of	95% Back of	Oueue	Lane	Lane	Cap.	Prob.
	Total veh/h	HV %	Cap.	Satn v/c	Util.	Delay	Service	Veh	Dist ft	Config	Length	Adj.	Block.
South: SR	36		A HEAR								2,700		
Lane 1 ^d	336	2.0	792	0.424	100	10.0	LOS A	3.2	80.4	Full	1600	0.0	0.0
Lane 2	273	2.0	827	0.330	100	8.1	LOS A	2.4	59.7	Full	1600	0.0	0.0
Approach	609	2.0		0.424		9.2	LOSA	3.2	80.4				
East: Palme	er Dr												
Lane 1 ^d	510	2.0	763	0.668	100	17.0	LOSC	7.1	181.2	Full	1600	0.0	0.0
Approach	510	2.0		0.668		17.0	LOS C	7.1	181.2				
North: SR 6	6												
Lane 1 ^d	785	2.0	871	0.902	100	33.1	LOS D	20.2	512.3	Full	1600	0.0	0.0
Approach	785	2.0		0.902		33.1	LOS D	20.2	512.3				
West: Site I	Driveway												
Lane 1 ^d	154	2.0	393	0.392	100	16.9	LOSC	2.8	70.2	Full	1600	0.0	0.0
Approach	154	2.0		0.392		16.9	LOS C	2.8	70.2				
Intersection	2058	2.0		0.902		20.8	LOSC	20.2	512.3				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: THE MANNIK & SMITH GROUP, INC. | Processed: Friday, August 04, 2017 3:18:27 PM Project: W:\Projects\Projects\Projects F-J\J1840001\ENGAPPS\SIDRA\Build Volumes.sip7

Site: 101 [2018 PM Build]

SR 66/Palmer Roundabout Roundabout

	Demand F	lows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total veh/h	HV %	Cap.	Satn v/c	Util.	Delay sec	Service	Veh	Dist ft	Config	Length	Adj.	Block.
South: SR 6	6							and the second s				70	70
Lane 1 ^d	402	2.0	1089	0.369	100	7.1	LOSA	2.5	63.2	Full	1600	0.0	0.0
Lane 2	101	2.0	1135	0.089	100	3.9	LOS A	0.5	12.5	Full	1600	0.0	0.0
Approach	503	2.0		0.369		6.4	LOS A	2.5	63.2				
East: Palme	r Dr												
Lane 1 ^d	365	2.0	730	0.501	100	12.3	LOS B	3.8	96.8	Full	1600	0.0	0.0
Approach	365	2.0		0.501		12.3	LOS B	3.8	96.8				
North: SR 6	3												
Lane 1 ^d	524	2.0	923	0.568	100	11.7	LOS B	4.7	118.7	Full	1600	0.0	0.0
Approach	524	2.0		0.568		11.7	LOS B	4.7	118.7				
West: Site D	riveway												
Lane 1 ^d	154	2.0	646	0.239	100	8.5	LOSA	1.4	35.8	Full	1600	0.0	0.0
Approach	154	2.0		0.239		8.5	LOS A	1.4	35.8				
ntersection	1546	2.0		0.568		9.8	LOSA	4.7	118.7				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: THE MANNIK & SMITH GROUP, INC. | Processed: Friday, August 04, 2017 3:18:30 PM Project: W:\Projects\Projects F-J\J1840001\ENGAPPS\SIDRA\Build Volumes.sip7

∀ Site: 101 [2038 AM Build]

SR 66/Palmer Roundabout Roundabout

	Demand F	Flows		Deg.	Lane	Average	Level of	95% Back of	of Oueue	Lane	Lane	Сар.	Prob.
	Total veh/h	HV %	Cap.	Satn v/c	Util.	Delay	Service	Veh	Dist	Config	Length	Adj.	Block.
South: SR 6	THE STANK STATE OF												
Lane 1 ^d	399	2.0	851	0.469	100	10.3	LOS B	4.0	100.7	Full	1600	0.0	0.0
Lane 2	309	2.0	888	0.348	100	7.9	LOS A	2.7	67.5	Full	1600	0.0	0.0
Approach	708	2.0		0.469		9.2	LOS A	4.0	100.7				
East: Palme	r Dr												
Lane 1 ^d	558	2.0	802	0.695	100	17.5	LOSC	8.1	204.7	Full	1600	0.0	0.0
Approach	558	2.0		0.695		17.5	LOS C	8.1	204.7				
North: SR 6	6												
Lane 1 ^d	893	2.0	954	0.936	100	36.5	LOS E	24.8	630.8	Full	1600	0.0	0.0
Approach	893	2.0		0.936		36.5	LOS E	24.8	630.8				
West: Site D	riveway												
Lane 1 ^d	154	2.0	373	0.414	100	18.4	LOSC	3.2	81.2	Full	1600	0.0	0.0
Approach	154	2.0		0.414		18.4	LOS C	3.2	81.2				
Intersection	2314	2.0		0.936		22.4	LOS C	24.8	630.8				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: THE MANNIK & SMITH GROUP, INC. | Processed: Friday, August 04, 2017 3:18:28 PM Project: W:\Projects\Projects F-J\J1840001\ENGAPPS\SIDRA\Build Volumes.sip7

♥ Site: 101 [2038 PM Build]

SR 66/Palmer Roundabout Roundabout

	Demand I	lows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total veh/h	HV %	Cap. veh/h	Satn v/c	Util.	Delay sec	Service	Veh	Dist ft	Config	Length		Block.
South: SR 6	6			VERNING TO			totto Manual State					70	,0
Lane 1 ^d	483	2.0	1195	0.404	100	7.1	LOSA	2.9	73.9	Full	1600	0.0	0.0
Lane 2	119	2.0	1239	0.096	100	3.7	LOS A	0.6	14.0	Full	1600	0.0	0.0
Approach	602	2.0		0.404		6.4	LOS A	2.9	73.9				
East: Palme	r Dr												
Lane 1 ^d	404	2.0	762	0.530	100	12.6	LOS B	4.4	112.5	Full	1600	0.0	0.0
Approach	404	2.0		0.530		12.6	LOS B	4.4	112.5				
North: SR 6	5												
Lane 1 ^d	609	2.0	1009	0.604	100	11.9	LOS B	5.5	139.8	Full	1600	0.0	0.0
Approach	609	2.0		0.604		11.9	LOS B	5.5	139.8				
West: Site D	riveway												
Lane 1 ^d	154	2.0	657	0.235	100	8.3	LOSA	1.5	37.6	Full	1600	0.0	0.0
Approach	154	2.0		0.235		8.3	LOS A	1.5	37.6				
Intersection	1770	2.0		0.604		9.9	LOS A	5.5	139.8				

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.

LOS F will result if v/c > 1 irrespective of lane delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all lanes (v/c not used as specified in HCM 6).

Roundabout Capacity Model: SIDRA Standard.

HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

d Dominant lane on roundabout approach

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: THE MANNIK & SMITH GROUP, INC. | Processed: Friday, August 04, 2017 3:18:31 PM Project: W:\Projects\Projects F-J\J1840001\ENGAPPS\SIDRA\Build Volumes.sip7

Trip Generation Calculations

Trips After Pass-By is subtracted Total trips before pass-by

Tilba Virei	rass-by	15 SUDITACE
ln AM	Out AM	AM Total
117	107	224
ln PM	Out PM	PM Total
83	74	157

Total trips	neiore ha	155-DY
In AM	Out AM	AM Total
154	142	296
In PM	Out PM	PM Total
159	142	301

		Buile	ding 1					
AM Restaurant (932)				Directional	Distribution		Total	
	1000 Square Footage Area	Average Rate	Number of Trips	In	Out	In	Out	Total
6k	6	13.33	80	53%	47%	43	37	80
						-9	-8	-17
otal after Pass-by					1	34	29	63
M Restaurant (932)				Directional	Distribution		Total	
, ,	1000 Square Footage Area	Average Rate	Number of Trips		Out	In	Out	Total
		18.49	111	54%	46%	60	51	
6k	6	10.43	111					111
6k otal after Pass-by	6	10.43	111	0170		-26	-22	111 -48

Pass-By reduction 22%

Building 2

Pass-By reduction 43%

AM Restaurant (934) Directional Distribution
 1000 Square Footage Area Average Rate Number of Trips
 In
 Out
 In
 Out
 Total

 1.5
 53.61
 81
 51%
 49%
 42
 39
 81
 51% 49% 42 39 81 -11 -10 -21 1.5k Total after Pass-by 31 29 60 PM Restaurant (934) Directional Distribution 1000 Square Footage Area Average Rate Number of Trips In Out In Out Total
1.5 47.3 71 52% 48% 37 34 71
-19 -17 -36 1.5k -19 -17 -36 18 17 35 Total after Pass-by

Pass-By reduction 25%

Building 3 AM Restaurant (934) Directional Distribution 1000 Square Footage Area Average Rate Number of Trips In Out In Out Total
2.5 53.61 135 51% 49% 69 66 135
-17 -17 -34 Total after Pass-by 52 49 101

Pass-By reduction

PM Restaurant (934) Directional Distribution 1000 Square Footage Area Average Rate Number of Trips In Out In Out Total
2.5 47.3 119 52% 48% 62 57 119 -31 -29 -60 Total after Pass-by

Pass-By reduction 25%

Pass-By reduction

Number of Additional Site Trips After Pass by has been subtracted

2018 AM

	OUT AFTER PA	ASS BY	
NB	392	36.1	36
SB	451	41.6	42
WB	319 total	29.4 107.1	29 107

	IN AFTER PA	ASS BY	
NB	392	39.5	39
SB	451	45.5	46
WB	319 total	32.2 117.2	32 117

2018 PM

	OUT AFTER PA	ASS BY	
NB	337	27.1	27
SB	380	30.6	31
WB	204 total	16.4 74.1	16 74

	IN AFTER PAS	SS BY	
NB	337	30.4	30
SB	380	34.3	34
WB	204 total	18.4 83.1	19 83

Pass By Trip Distribution

		M Intersection 1162 M Pass by 37					921 M Pass by	ion volume	
	AM Volume		ass By trips		D	4 \ / = 1	76		
NB Thru	237	20%	7.55	7		M Volume	000/	40.00	
NB Right	155	13%		7	NB Thru	240	26%	19.80	20
ND NIGHT	100	1370	4.94	5	NB Right	97	11%	8.00	8
SB Thru	183	16%	5.83	6	SB Thru	269	29%	22.20	22
SB Left	268	23%	8.53	9	SB Left	111	12%	9.16	9
									-
WB Right	212	18%	6.75	7	WB Right	118	13%	9.74	10
WB Left	107	9%	3.41	3	WB Left	86	9%	7.10	7
		100%		37.00			100%		76.00
	AM	1 Intersection	n Volume			DΛ	/ Intersection	on volumo	
		1162				1 11	921	on volume	
	ΔN								
		Pass by t	rins OUT			DI		rine OUT	
	. 730	Pass by t	rips OUT			PN	Pass by	trips OUT	
	AM Volume	35	3.73		PN			trips OUT	
NB Thru		35	rips OUT ss By trips 7.14	7		1 Volume	1 Pass by 68	•	18
NB Thru NB Right	AM Volume	35 Pa 20%	ss By trips 7.14	7 5	NB Thru	1 Volume 240	68 26%	17.72	18 7
	AM Volume 237	35 Pa	ss By trips	7 5		1 Volume	1 Pass by 68	•	18 7
	AM Volume 237	35 Pa 20%	ss By trips 7.14	5	NB Thru NB Right	1 Volume 240 97	68 26% 11%	17.72 7.16	7
NB Right	AM Volume 237 155	35 Pa 20% 13%	ss By trips 7.14 4.67 5.51	5 6	NB Thru NB Right SB Thru	1 Volume 240 97 269	68 26% 11% 29%	17.72 7.16 19.86	7 20
NB Right SB Thru	AM Volume 237 155 183	35 Pa 20% 13%	ss By trips 7.14 4.67	5	NB Thru NB Right	1 Volume 240 97	68 26% 11%	17.72 7.16	7
NB Right SB Thru	AM Volume 237 155 183	35 Pa 20% 13%	ss By trips 7.14 4.67 5.51	5 6 8	NB Thru NB Right SB Thru SB Left	1 Volume 240 97 269 111	1 Pass by 68 26% 11% 29% 12%	17.72 7.16 19.86 8.20	7 20 8
NB Right SB Thru SB Left	AM Volume 237 155 183 268	35 Pa 20% 13% 16% 23%	ss By trips 7.14 4.67 5.51 8.07 6.39	5 6	NB Thru NB Right SB Thru SB Left WB Right	1 Volume 240 97 269 111	1 Pass by 1 68 26% 11% 29% 12% 13%	17.72 7.16 19.86 8.20 8.71	7 20 8 9
NB Right SB Thru SB Left WB Right	AM Volume 237 155 183 268	35 Pa 20% 13% 16% 23% 18%	ss By trips 7.14 4.67 5.51 8.07	5 6 8	NB Thru NB Right SB Thru SB Left	1 Volume 240 97 269 111	1 Pass by 68 26% 11% 29% 12%	17.72 7.16 19.86 8.20	7 20 8